Extensions 1→N→G→Q→1 with N=C2 and Q=C23⋊Dic5

Direct product G=N×Q with N=C2 and Q=C23⋊Dic5
dρLabelID
C2×C23⋊Dic580C2xC2^3:Dic5320,846


Non-split extensions G=N.Q with N=C2 and Q=C23⋊Dic5
extensionφ:Q→Aut NdρLabelID
C2.1(C23⋊Dic5) = C24.Dic5central extension (φ=1)80C2.1(C2^3:Dic5)320,83
C2.2(C23⋊Dic5) = C24.D10central extension (φ=1)80C2.2(C2^3:Dic5)320,84
C2.3(C23⋊Dic5) = (C2×C20)⋊C8central extension (φ=1)160C2.3(C2^3:Dic5)320,86
C2.4(C23⋊Dic5) = C242Dic5central stem extension (φ=1)404C2.4(C2^3:Dic5)320,94
C2.5(C23⋊Dic5) = C4⋊C4⋊Dic5central stem extension (φ=1)80C2.5(C2^3:Dic5)320,95
C2.6(C23⋊Dic5) = C10.29C4≀C2central stem extension (φ=1)80C2.6(C2^3:Dic5)320,96
C2.7(C23⋊Dic5) = (C22×C20)⋊C4central stem extension (φ=1)804C2.7(C2^3:Dic5)320,97
C2.8(C23⋊Dic5) = C42⋊Dic5central stem extension (φ=1)804C2.8(C2^3:Dic5)320,99
C2.9(C23⋊Dic5) = C42.Dic5central stem extension (φ=1)804C2.9(C2^3:Dic5)320,100
C2.10(C23⋊Dic5) = C423Dic5central stem extension (φ=1)404C2.10(C2^3:Dic5)320,103
C2.11(C23⋊Dic5) = C42.3Dic5central stem extension (φ=1)804C2.11(C2^3:Dic5)320,106

׿
×
𝔽